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Abstract. In earlier proposals, the robust counterpart of conic optimization problems exhibits a lateral increase
in complexity, i.e., robust linear programming problems (LPs) become second order cone problems (SOCPs),
robust SOCPs become semidefinite programming problems (SDPs), and robust SDPs become NP-hard. We
propose a relaxed robust counterpart for general conic optimization problems that (a) preserves the computa-
tional tractability of the nominal problem; specifically the robust conic optimization problem retains its original
structure, i.e., robust LPs remain LPs, robust SOCPs remain SOCPs and robust SDPs remain SDPs, and (b)
allows us to provide a guarantee on the probability that the robust solution is feasible when the uncertain
coefficients obey independent and identically distributed normal distributions.
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1. Introduction

The general optimization problem under parameter uncertainty is as follows:

max c′x
s.t. fi(x, D̃i ) ≥ 0, i ∈ I,

x ∈ X,

(1)

where fi(x, D̃i ), i ∈ I are given functions, X is a given set and D̃i , i ∈ I is the vector of
random coefficients. Without loss of generality, we can move the objective function to the
constraints and hence, assume that the objective is linear with deterministic coefficients.

We define the nominal problem to be Problem (1) when the random coefficients D̃i

take values equal to their expected values D0
i . In order to protect the solution against

infeasibility of Problem (1), we may formulate the problem using chance constraints as
follows:

max c′x
s.t. P(fi(x, D̃i ) ≥ 0) ≥ 1 − εi, i ∈ I,

x ∈ X.

(2)
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Unfortunately, it is well known that such chance constraints are non-convex and gen-
erally intractable. However, we would like to solve a tractable problem and obtain a
“robust” solution that is feasible to the chance constraints Problem (2) when εi is very
small and without having to reduce the objective function excessively. In order to address
Problem (1) Ben-Tal and Nemirovski [1, 3] and independently by El Ghaoui et al. [12,
13] propose to solve the following robust optimization problem

max c′x
s.t. min

Di∈Ui

fi(x, Di ) ≥ 0, i ∈ I,

x ∈ X,

(3)

where Ui , i ∈ I are given uncertainty sets. The motivation for solving Problem (3) is
to find a solution x∗ ∈ X that “immunizes” Problem (1) against parameter uncertainty.
That is, by selecting appropriate sets Ui , i ∈ I , we can find solutions x∗ to Problem (3)
that give guarantees εi in Problem (2). However, this is done at the expense of decreasing
the achievable objective. It is important to note that we describe uncertainty in Problem
(3) (using the sets Ui , i ∈ I ) in a deterministic manner. In selecting uncertainty sets Ui ,
i ∈ I we feel that two criteria are important:

(a) Preserving the computational tractability both theoretically and most importantly
practically of the nominal problem. From a theoretical perspective it is desirable
that if the nominal problem is solvable in polynomial time, then the robust prob-
lem is also polynomially solvable. More specifically, it is desirable that robust conic
optimization problems retain their original structure, i.e., robust linear programming
problems (LPs) remain LPs, robust second order cone problems (SOCPs) remain
SOCPs and robust semidefinite programming problems (SDPs) remain SDPs.

(b) Being able to find a guarantee on the probability that the robust solution is feasible,
when the uncertain coefficients obey some natural probability distributions.

Let us examine whether the state of the art in robust optimization has the two prop-
erties mentioned above:

1. Linear Programming:A uncertain LP constraint is of the form ã′x ≥ b̃, for which ã

and b̃ are subject to uncertainty. When the corresponding uncertainty set U is a poly-
hedron, then the robust counterpart is also an LP (see Ben-Tal and Nemirovski [3, 4]
and Bertsimas and Sim [9, 10]). When U is ellipsoidal, then the robust counterpart
becomes an SOCP. For linear programming there are probabilistic guarantees for
feasibility available ([3, 4] and [9, 10]) under reasonable probabilistic assumptions
on data variation.

2. Quadratic Constrained Quadratic Programming (QCQP): An uncertain QCQP
constraint is of the form ‖Ãx‖2

2 + b̃
′
x + c̃ ≤ 0, where Ã, b̃ and c̃ are subject to

data uncertainty. The robust counterpart is an SDP if the uncertainty set is a simple
ellipsoid, and NP -hard if the set is polyhedral (Ben-Tal and Nemirovski [1, 3]). To
the best of our knowledge, there are no available probabilistic bounds.

3. Second Order Cone Programming (SOCP): An uncertain SOCP constraint is of
the form ‖Ãx + b̃‖2 ≤ c̃′x + d̃ , where Ã, b̃, c̃ and d̃ are subject to data uncertainty.
The robust counterpart is an SDP if Ã, b̃ belong in an ellipsoidal uncertainty set U1
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and c̃, d̃ belong in another ellipsoidal set U2. The problem has unknown complexity,
however, if Ã, b̃, c̃, d̃ vary together in a common ellipsoidal set. Nemirovski [15]
proposed tractable approximation in the form of an SDP if c and d are deterministic
and showed probabilistic guarantees in this case. However, to the best of our knowl-
edge, there are no available probability bounds to address the problem when c and
d are stochastic.

4. Semidefinite Programming (SDP): An uncertain SDP constraint of the form
∑n

j=1

Ãj xj � B̃, where Ã1, ..., Ãn and B̃ are subject to data uncertainty. The robust
counterpart is NP -hard for ellipsoidal uncertainty sets. Nemirovski [15] proposed a
tractable approximation in the form of an SDP and showed probabilistic guarantees
in this case.

5. Conic Programming: An uncertain Conic Programming constraint of the form∑n
j=1 Ãj xj �K B̃, where Ã1, ..., Ãn and B̃ are subject to data uncertainty. The

cone K is closed, pointed and with a nonempty interior. To the best of our knowl-
edge, there are no results available regarding tractability and probabilistic guarantees
in this case.

Our goal in this paper is to address (a) and (b) above for robust conic optimization
problems. Specifically, we propose a new robust counterpart of Problem (1) that has
the following properties: (a) It inherits the character of the nominal problem; for exam-
ple, robust SOCPs remain SOCPs and robust SDPs remain SDPs; (b) under reasonable
probabilistic assumptions on data variation we establish probabilistic guarantees for fea-
sibility that lead to explicit ways for selecting parameters that control the robustness; (c)
It is applicable for general conic problems.

The structure of the paper is as follows. In Section 2, we describe the proposed
robust model and in Section 3, we show that the robust model inherits the character of
the nominal problem for LPs, QCQPs, SOCPs and SDPs. In Section 4, we prove prob-
abilistic guarantees for feasibility for these classes of problems. In Section 5, we show
tractability and give explicit probabilistic bounds for general conic problems. Section 6
concludes the paper.

2. The Robust model

In this section, we outline the ingredients of the proposed framework for robust conic
optimization.

2.1. Model for parameter uncertainty

The model of data uncertainty we consider is

D̃ = D0 +
∑

j∈N

∆Dj z̃j , (4)

where D0 is the nominal value of the data, ∆Dj , j ∈ N is a direction of data perturba-
tion, and z̃j , j ∈ N are independent and identically distributed random variables with
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mean equal to zero, so that E[D̃] = D0. The cardinality of N may be small, modeling
situations involving a small collection of primitive independent uncertainties (for exam-
ple a factor model in a finance context), or large, potentially as large as the number of
entries in the data. In the former case, the elements of D̃ are strongly dependent, while
in the latter case the elements of D̃ are weakly dependent or even independent (when
|N | is equal to the number of entries in the data). The support of z̃j , j ∈ N can be
unbounded or bounded. Ben-Tal and Nemirovskii [4] and Bertsimas and Sim [9] have
considered the case that |N | is equal to the number of entries in the data.

2.2. Uncertainty sets and related norms

In the robust optimization framework of (3), we consider the uncertainty set U as follows:

U =




D | ∃u ∈ 	|N | : D = D0 +

∑

j∈N

∆Dj uj , ‖u‖ ≤ �





, (5)

where � is a parameter, which we will show, is related to the probabilistic guaran-
tee against infeasibility. We restrict the vector norm ‖.‖ we consider by imposing the
condition:

‖u‖ = ‖|u|‖, (6)

where |u| = (|u1|, . . . , |u|N ||)′ if u = (u1, . . . , u|N |)′. We call such norm the absolute
norm. The following norms commonly used in robust optimization are absolute norms :

– The polynomial norm lk , k = 1, . . . , ∞ (see [1, 4, 18]).
– The l2 ∩ l∞ norm: max{‖u‖2, �‖u‖∞}, � > 0 (see [4]). This norm is used in

modeling bounded and symmetrically distributed random data.
– The l1 ∩ l∞ norm: max{ 1

�
‖u‖1, ‖u‖∞}, � > 0 (see [9, 8] ). Note that this norm is

equal to l∞ if � = |N |, and l1 if � = 1. This norm is used in modeling bounded
and symmetrically distributed random data, and has the additional property that the
robust counterpart of an LP is still an LP (Bertsimas et al. [8]).

Note that the norm ‖u‖ = ‖Pu‖k , where P is an invertible matrix, is not an absolute
norm. However, we can let u = P −1v, and modify the uncertainty set of (5) accordingly
so that the norm considered remains absolute.

Given a norm ‖.‖ we consider the dual norm ‖.‖∗ defined as

‖s‖∗ = max
‖x‖≤1

s′x.

We next show some basic properties of norms satisfying Eq. (6), which we will subse-
quently use in our development.

Proposition 1. The absolute norm ‖ · ‖ satisfies the following

(a) ‖w‖∗ = ‖|w|‖∗.
(b) For all v, w such that |v| ≤ |w|, ‖v‖∗ ≤ ‖w‖∗.
(c) For all v, w such that |v| ≤ |w|, ‖v‖ ≤ ‖w‖.
The proof is shown in Appendix A.
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2.3. The class of functions f (x, D)

We impose the following restrictions on the class of functions f (x, D) in Problem (1)
(we drop index i for clarity):

Assumption 1. The function f (x, D) satisfies:

(a) The function f (x, D) is concave in D for all x ∈ 	n.
(b) f (x, kD) = kf (x, D), for all k ≥ 0, D, x ∈ 	n.

Note that for functions f (·, ·) satisfying Assumption 1 we have:

f (x, A + B) ≥ 1

2
f (x, 2A) + 1

2
f (x, 2B) = f (x, A) + f (x, B). (7)

The restrictions implied by Assumption 1 still allow us to model LPs, QCQPs, SOCPs
and SDPs. Table 1 shows the function f (x, D) for these problems. Note that SOCP(1)
models situations that only A and b vary, while SOCP(2) models situations that A, b,
c and d vary. Note that for QCQP, the function, −‖Ax‖2

2 − b′x − c does not satisfy
the second assumption. However, by extending the dimension of the problem, it is well-
known that the QCQP constraint is SOCP constraint representable (see [5]). Finally, the
SDP constraint,

n∑

j=1

Aixi � B,

is equivalent to

λmin




n∑

j=1

Aixi − B



 ≥ 0,

where λmin(M) is the function that returns the smallest eigenvalue of the symmetric
matric M .

Table 1. The function f (x, D) for different conic optimization problems

Type Constraint D f (x, D)

LP a′x ≥ b (a, b) a′x − b

QCQP ‖Ax‖2
2 + b′x

+c ≤ 0

(A, b, c, d)

d0 = 1,

�dj = 0,

∀j ∈ N

d−(b
′
x+c)

2

−
√

‖Ax‖2
2 +

(
d+b

′
x+c

2

)2

SOCP(1)
‖Ax + b‖2
≤ c′x + d

(A, b, c, d)

∆cj = 0,

�dj = 0,

∀j ∈ N

c′x + d − ‖Ax + b‖2

SOCP(2)
‖Ax + b‖2
≤ c′x + d

(A, b, c, d) c′x + d − ‖Ax + b‖2

SDP
∑n

j=1 Aixi − B

∈ Sm
+

(A1, ..., An, B) λmin(
∑n

j=1 Aixi − B)
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3. The proposed robust framework and its tractability

Specifically, under the model of data uncertainty in Eq. (4) we propose the following
constraint for controling the feasibility of stochastic data uncertainty in the constraint
f (x, D̃) ≥ 0:

min
(v,w)∈V

f (x, D0) +
∑

j∈N

{
f (x,∆Dj )vj + f (x, −∆Dj )wj

}
≥ 0, (8)

where

V =
{
(v, w) ∈ 	|N |×|N |

+ | ‖v + w‖ ≤ �
}

, (9)

and the norm ‖.‖ satisfies Eq. (6). We next show that underAssumption 1, Eq. (8) implies
the classical definition of robustness:

f (x, D) ≥ 0, ∀D ∈ U, (10)

where U is defined in Eq. (5). Moreover, if the function f (x, D) is linear in D, then Eq.
(8) is equivalent to Eq. (10).

Proposition 2. Suppose the given norm ‖.‖ satisfies Eq. (6).

(a) If f (x, A + B) = f (x, A) + f (x, B), then x satisfies (8) if and only if x satisfies
(10).

(b) Under Assumption 1, if x is feasible in Problem (8), then x is feasible in Problem
(10).

Proof. (a) Under the linearity assumption, Eq. (8) is equivalent to:

f



x, D0 +
∑

j∈N

∆Dj (vj − wj)



 ≥ 0, ∀‖v + w‖ ≤ �, v, w ≥ 0, (11)

while Eq. (10) can be written as:

f



x, D0 +
∑

j∈N

∆Dj rj



 ≥ 0, ∀‖r‖ ≤ �. (12)

Suppose x is infeasible in (12), that is, there exists r, ‖r‖ ≤ � such that

f



x, D0 +
∑

j∈N

∆Dj rj



 < 0.

For all j ∈ N , let vj = max{rj , 0} and wj = − min{rj , 0}. Clearly, r = v − w and
since vj + wj = |rj |, we have from Eq. (6) that ‖v + w‖ = ‖r‖ ≤ �. Hence, x is
infeasible in (11) as well.
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Conversely, suppose x is infeasible in (11), then there exist v, w ≥ 0 and ‖v+w‖ ≤
� such that

f



x, D0 +
∑

j∈N

∆Dj (vj − wj)



 < 0.

For all j ∈ N , we let rj = vj − wj and we observe that |rj | ≤ vj + wj . Therefore,
for norms satisfying Eq. (6) we have

‖r‖ = ‖|r|‖ ≤ ‖v + w‖ ≤ �,

and hence, x is infeasible in (12).
(b) Suppose x is feasible in Problem (8), i.e.,

f (x, D0) +∑j∈N

{
f (x,∆Dj )vj + f (x, −∆Dj )wj

} ≥ 0,

∀‖v + w‖ ≤ �, v, w ≥ 0.

From Eq. (7) and Assumption 1(b)

0 ≤ f (x, D0) +∑j∈N

{
f (x,∆Dj )vj + f (x, −∆Dj )wj

}

≤ f (x, D0 +∑j∈N ∆Dj (vj − wj))

for all ‖v + w‖ ≤ �, v, w ≥ 0. In the proof of part (a) we established that

f (x, D0 +
∑

j∈N

∆Dj rj ) ≥ 0, ∀‖r‖ ≤ �

is equivalent to

f (x, D0 +
∑

j∈N

∆Dj (vj − wj)) ≥ 0, ∀‖v + w‖ ≤ �, v, w ≥ 0,

and thus x satisfies (10). 
�

Note that there are other proposals that relax the classical definition of robustness
(10) (see for instance Ben-Tal and Nemirovski [2]) and lead to tractable solutions. One
natural question is whether the approximation is overly conservative with respect to
Problem (10). A way to address this is to show that if x is feasible in Problem (10), it
also feasible in Problem (8) in which � is reduced to σ�, σ < 1. Ideally, σ should not
decrease too rapidly with respect to the dimension of the problem. While we do not have
theoretical evidence on the closeness of the approximation, Bertsimas and Brown [7]
report excellent computational results utilizing Problem (8) for constrained stochastic
linear control problems, that is the solutions obtained when solving problem (8) are very
close to the solutions obtained when solving Problem (10).
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3.1. Tractability of the proposed framework

Unlike the classical definition of robustness (10), which can not be represented in a
tractable manner, we next show that Eq. (8) can be represented in a tractable manner.

Theorem 1. For a norm satisfying Eq. (6) and a function f (x, D) satisfying Assump-
tion 1

(a) Constraint (8) is equivalent to

f (x, D0) ≥ �‖s‖∗, (13)

where

sj = max{−f (x,∆Dj ), −f (x, −∆Dj )}, ∀j ∈ N.

(b) Eq. (13) can be written as:

f (x, D0) ≥ �y

f (x,∆Dj ) + tj ≥ 0, ∀j ∈ N

f (x, −∆Dj ) + tj ≥ 0, ∀j ∈ N

‖t‖∗ ≤ y

y ∈ 	, t ∈ 	|N |.

(14)

Proof. (a) We introduce the following problems:

z1 = max a′v + b′w
s.t. ‖v + w‖ ≤ �

v, w ≥ 0,

(15)

and

z2 = max
∑

j∈N

max{aj , bj , 0}rj

s.t. ‖r‖ ≤ �,

(16)

and show that z1 = z2. Suppose r∗ is an optimal solution to (16). For all j ∈ N , let

vj = wj = 0 if max{aj , bj } ≤ 0

vj = |r∗
j |, wj = 0 if aj ≥ bj , aj > 0

wj = |r∗
j |, vj = 0 if bj > aj , bj > 0.

Observe that ajvj + bjwj ≥ max{aj , bj , 0}r∗
j and wj + vj ≤ |r∗

j |, ∀j ∈ N . From
Proposition 1(c) we have ‖v + w‖ ≤ ‖r∗‖ ≤ �, and thus v, w are feasible in Problem
(15), leading to

z1 ≥
∑

j∈N

(ajvj + bjwj ) ≥
∑

j∈N

max{aj , bj , 0}r∗
j = z2.
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Conversely, let v∗, w∗ be an optimal solution to Problem (15). Let r = v∗ +w∗. Clearly
‖r‖ ≤ � and observe that

rj max{aj , bj , 0} ≥ ajv
∗
j + bjw

∗
j , ∀j ∈ N.

Therefore, we have

z2 ≥
∑

j∈N

max{aj , bj , 0}rj ≥
∑

j∈N

(ajv
∗
j + bjw

∗
j ) = z1,

leading to z1 = z2. We next observe that

min
(v,w)∈V

∑

j∈N

{
f (x,∆Dj )vj + f (x, −∆Dj )wj

}

= − max
(v,w)∈V

∑

j∈N

{
−f (x,∆Dj )vj − f (x, −∆Dj )wj

}

= − max
{‖r‖≤�}

∑

j∈N

{
max{−f (x,∆Dj ), −f (x, −∆Dj ), 0}rj

}

and using the definition of dual norm, ‖s‖∗ = max‖x‖≤1 s′x, we obtain
�‖s‖∗ = max‖x‖≤� s′x, i.e., Eq. (13) follows. Note that

sj = max{−f (x,∆Dj ), −f (x, −∆Dj )} ≥ 0,

since otherwise there exists an x such that sj < 0, i.e., f (x,∆Dj ) > 0 and
f (x, −∆Dj ) > 0. From Assumption 1(b) f (x,0) = 0, contradicting the concav-
ity of f (x, D) (Assumption 1(a)).

Suppose that x is feasible in Problem (13). Defining t = s and y = ‖s‖∗, we can eas-
ily check that (x, t, y) are feasible in Problem (14). Conversely, suppose, x is infeasible
in (13), that is,

f (x, D0) < �‖s‖∗.

Since, tj ≥ sj = max{−f (x,∆Dj ), −f (x, −∆Dj )} ≥ 0 we apply Proposition 1(b)
to obtain ‖t‖∗ ≥ ‖s‖∗. Thus,

f (x, D0) < �‖s‖∗ ≤ �‖t‖∗ ≤ �y,

i.e., x is infeasible in (14).

(b) It is immediate that Eq. (13) can be written in the form of Eq. (14). 
�

In Table 2, we list the common choices of norms, the representation of their dual
norms and the corresponding references.
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Table 2. Representation of the dual norm for t ≥ 0

Norms ‖u‖ ‖t‖∗ ≤ y Ref.

l2 ‖u‖2 ‖t‖2 ≤ y [4]
l1 ‖u‖1 tj ≤ y, ∀j ∈ N [8]
l∞ ‖u‖∞

∑
j∈N tj ≤ y [8]

lp , p ≥ 1 ‖u‖p

(
∑

j∈N t

q
q−1
j

) q−1
q

≤ y [8]

l2 ∩ l∞ max{‖u‖2, �‖u‖∞} ‖s − t‖2 + 1
�

∑
j∈N sj ≤ y

s ∈ 	|N |
+

[4]

l1 ∩ l∞ max{ 1
�
‖u‖1, ‖u‖∞}

�p +∑j∈N sj ≤ y

sj + p ≥ tj , ∀j ∈ N

p ∈ 	+, s ∈ 	|N |
+

[8]

3.2. Representation of the function max{−f (x, �D), −f (x, −�D)}

The function

g(x,∆Dj ) = max{−f (x,∆Dj ), −f (x, −∆Dj )}

naturally arises in Theorem 1. Recall that a norm satisfies ‖A‖ ≥ 0, ‖kA‖ = |k| · ‖A‖,
‖A + B‖ ≤ ‖A‖ + ‖B‖, and ‖A‖ = 0, implies that A = 0. We show next that the
function g(x, A) satisfies all these properties except the last one, i.e., it behaves almost
like a norm.

Proposition 3. Under Assumption 1, the function

g(x, A) = max{−f (x, A), −f (x, −A)}

satisfies the following properties:

(a) g(x, A) ≥ 0,
(b) g(x, kA) = |k|g(x, A),
(c) g(x, A + B) ≤ g(x, A) + g(x, B).

Proof. (a) Suppose there exists x such that g(x, A) < 0, i.e., f (x, A) > 0 and
f (x, −A) > 0. From Assumption 1(b) f (x,0) = 0, contradicting the concav-
ity of f (x, A) (Assumption 1(a)).

(b) For k ≥ 0, we apply Assumption 1(b) and obtain

g(x, kA) = max{−f (x, kA), −f (x, −kA)}
= k max{−f (x, A), −f (x, −A)}
= kg(x, A).

Similarly, if k < 0 we have

g(x, kA) = max{−f (x, −k(−A)), −f (x, −k(A))}
= −kg(x, A).
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(c) Using Eq. (7) we obtain

g(x, A + B) = g(x, 1
2 (2A + 2B))

≤ 1
2g(x, 2A) + 1

2g(x, 2B)

= g(x, A) + g(x, B). 
�

Note that the function g(x, A) does not necessarily define a norm for A, since
g(x, A) = 0 does not necessarily imply A = 0. However, for LP, QCQP. SOCP(1),
SOCP(2) and SDP, and specific direction of data perturbation, ∆Dj , we can map
g(x,∆Dj ) to a function of a norm such that

g(x,∆Dj ) = ‖H(x,∆Dj )‖g,

where H(x,∆Dj ) is linear in ∆Dj and defined as follows (see also the summary in
Table 3):

(a) LP:
f (x, D) = a′x − b, where D = (a, b) and ∆Dj = (∆aj , �bj ). Hence,

g(x,∆Dj )

= max{−(∆aj )′x + �bj , (∆aj )′x − �bj }
= |(∆aj )′x − �bj |.

(b) QCQP:

f (x, D) = (d − (b′x + c))/2 −
√

‖Ax‖2
2 + ((d + b′x + c)/2

)2, where

D = (A, b, c, d) and ∆Dj = (∆Aj ,∆bj , �cj , 0). Therefore,

Table 3. The function H(x, �Dj ) and the norm ‖ · ‖g for different conic optimization problems

Type r = H(x,∆Dj ) g(x,∆Dj ) = ‖r‖g

LP r = (∆aj )′x − �bj |r|

QCQP

r =
[
r1
r0

]

r1 =
[

∆A
j
x

((∆b
j
)′x+�cj )/2

]

r0 = ((∆bj )′x + �cj )/2

‖r1‖2 + |r0|

SOCP(1) r = ∆Ajx + ∆bj ‖r‖2

SOCP(2)
r =

[
r1
r0

]

r1 = ∆Ajx + ∆bj

r0 = (∆cj )′x + �dj

‖r1‖2 + |r0|

SDP R =∑n
i=1 ∆A

j

i xi − ∆Bj ‖R‖2
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g(x,∆Dj ) = max





(∆b

j
)′x+�cj

2 +
√

‖∆Ajx‖2
2 +

(
(∆b

j
)′x+�cj

2

)2

,

− (∆b
j
)′x+�cj

2 +
√

‖∆Ajx‖2
2 +

(
(∆b

j
)′x+�cj

2

)2





=
∣
∣
∣
∣
(∆b

j
)′x+�cj

2

∣
∣
∣
∣+
√

‖∆Ajx‖2
2 +

(
(∆b

j
)′x+�cj

2

)2

.

(c) SOCP(1):
f (x, D) = c′x+d−‖Ax+b‖2

2, where D = (A, b, c, d) and∆Dj = (∆Aj ,∆bj ,

0, 0). Therefore,

g(x,∆Dj ) = ‖∆Ajx + ∆bj‖2.

(d) SOCP(2):
f (x, D) = c′x + d − ‖Ax + b‖2

2, where D = (A, b, c, d) and ∆Dj = (∆Aj ,

∆bj ,∆cj , dj ). Therefore,

g(x,∆Dj )

= max
{−(∆cj )′x − �dj + ‖∆Ajx + ∆bj‖2,

(∆cj )′x + �dj + ‖∆Ajx + ∆bj‖2
}

= |(∆cj )′x + �dj | + ‖∆Ajx + ∆bj‖2.

(e) SDP:
f (x, D) = λmin(

∑n
j=1 Aixi − B), where D = (A1, ..., An, B) and

∆Dj = (∆A
j
1, ...,∆A

j
n,∆Bj ). Therefore,

g(x,∆Dj )

= max
{
−λmin(

∑n
j=1 ∆A

j
i xi − ∆Bj ),

−λmin

(
−
(∑n

j=1 ∆A
j
i xi − ∆Bj

))}

= max
{
λmax

(
−
(∑n

j=1 ∆A
j
i xi − ∆Bj

))
,

λmax(
∑n

j=1 ∆A
j
i xi − ∆Bj )

}

=
∥
∥
∥
∥
∥
∥

n∑

j=1

∆A
j
i xi − ∆Bj

∥
∥
∥
∥
∥
∥

2

.

3.3. The nature and size of the robust problem

In this section, we discuss the nature and size of the proposed robust conic problem.
Note that in the proposed robust model (14) for every uncertain conic constraint f (x, D̃)

we add at most |N | + 1 new variables, 2|N | conic constraints of the same nature as the
nominal problem and an additional constraint involving the dual norm. The nature of
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this constraint depends on the norm we use to describe the uncertainty set U defined in
Eq. (5).

When all the data entries of the problem have independent random perturbations, by
exploiting sparsity of the additional conic constraints, we can further reduce the size of
the robust model. Essentially, we can express the model of uncertainty in the form of
Eq. (4), for which z̃j is the independent random variable associated with the j th data
element, and ∆Dj contains mostly zeros except at the entries corresponding to the data
element. As an illustration, consider the following semidefinite constraint,

(
a1 a2
a2 a3

)

x1 +
(

a4 a5
a5 a6

)

x2 �
(

a7 a8
a8 a9

)

,

such that each element in the data d = (a1, . . . , a9)
′ has an independent random per-

turbation, that is ãi = a0
i + �aiz̃i and z̃i are independently distributed. Equivalently, in

Eq. (4) we have

d̃ = d0 +
9∑

i=1

∆d i z̃i ,

where d0 = (a0
1 , . . . , a0

9)′ and ∆d i is a vector with �ai at the ith entry and zero,
otherwise. Hence, we can simplify the conic constraint in Eq. (14), f (x,∆d1)+ t1 ≥ 0
or

λmin

((
�a1 0

0 0

)

x1 +
(

0 0
0 0

)

x2 −
(

0 0
0 0

))

+ t1 ≥ 0,

as t1 ≥ − min{�a1x1, 0} or equivalently as linear constraints

t1 ≥ −�a1x1, t1 ≥ 0.

In Appendix B we derive and in Table 4 we summarize the number of variables and
constraints and their nature when the nominal problem is an LP, QCQP, SOCP (1) (only
A, b vary), SOCP (2) (A, b, c, d vary) and SDP for various choices of norms. Note that
for the cases of the l1, l∞ and l2 norms, we are able to collate terms so that the num-
ber of variables and constraints introduced is minimal. Furthermore, using the l2 norm
results in only one additional variable, one additional SOCP type of constraint, while
maintaining the nature of the original conic optimization problem of SOCP and SDP.
The use of other norms comes at the expense of more variables and constraints of the
order of |N |, which is not very appealing for large problems.

Table 4. Size increase and nature of robust formulation when each data entry has independent uncertainty

l1 l∞ l1 ∩ l∞ l2 l2 ∩ l∞

Vars. n + 1 1 2|N | + 2 1 2|N | + 1
Linear Const. 2n + 1 2n + 1 4|N | + 2 0 3|N |
SOC Const. 0 0 0 1 1

LP LP LP LP SOCP SOCP
QCQP SOCP SOCP SOCP SOCP SOCP

SOCP(1) SOCP SOCP SOCP SOCP SOCP
SOCP(2) SOCP SOCP SOCP SOCP SOCP

SDP SDP SDP SDP SDP SDP
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4. Probabilistic Guarantees

In this section, we derive a guarantee on the probability that the robust solution is fea-
sible, when the uncertain coefficients obey some natural probability distributions. An
important component of our analysis is the relation among different norms. We denote
by 〈 , 〉 the inner product on a vector space, 	m or the space of m by m symmetric matri-
ces, Sm×m. The inner product induces a norm

√〈x, x〉. For a vector space, the natural
inner product is the Euclidian inner product, 〈x, y〉 = x′y, and the induced norm is the
Euclidian norm ‖x‖2. For the space of symmetric matrices, the natural inner product is
the trace product or 〈X, Y 〉 = trace(XY ) and the corresponding induced norm is the
Frobenius norm, ‖X‖F (see [17]).

We analyze the relation of the inner product norm
√〈x, x〉 with the norm ‖x‖g

defined in Table 3 for the conic optimization problems we consider. Since ‖x‖g and√〈x, x〉 are valid norms in a finite dimensional space, there exist finite α1, α2 > 0 such
that

1

α1
‖r‖g ≤

√
〈r, r〉 ≤ α2‖r‖g, (17)

for all r in the relevant space.

Proposition 4. For the norm ‖·‖g defined in Table 3 for the conic optimization problems
we consider, Eq. (17) holds with the following parameters:

(a) LP: α1 = α2 = 1.

(b) QCQP, SOCP(2): α1 = √
2 and α2 = 1.

(c) SOCP(1): α1 = α2 = 1.

(d) SDP: α1 = 1 and α2 = √
m.

Proof. (a) LP: For r ∈ 	 and ‖r‖g = |r|, leading to Eq. (17) with α1 = α2 = 1.

(b) QCQP, SOCP(2): For r = (r1, r0)
′ ∈ 	l+1, let a = ‖r1‖2 and b = |r0|. Since

a, b > 0, using the inequality a + b ≤ √
2
√

a2 + b2 and
√

a2 + b2 ≤ a + b, we
have

1√
2

(‖r1‖2 + |r0|) ≤
√

r ′r = ‖r‖2 ≤ ‖r1‖2 + |r0|

leading to Eq. (17) with α1 = √
2 and α2 = 1.

(c) SOCP(1): For all r , Eq. (17) holds with α1 = α2 = 1.

(d) Let λj , j =1,. . ., m be the eigenvalues of the matrix A. Since ‖A‖F =
√

trace(A2)=√∑
j λ2

j and ‖A‖2 = maxj |λj |, we have

‖A‖2 ≤ ‖A‖F ≤ √
m‖A‖2,

leading to Eq. (17) with α1 = 1 and α2 = √
m. 
�

The central result of the section is as follows.
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Theorem 2.

(a) Under the model of uncertainty in Eq. (4), and given a feasible solution x in Eq.
(8), then

P(f (x, D̃) < 0) ≤ P



‖
∑

j∈N

rj z̃j‖g > �‖s‖∗


 ,

where

rj = H(x,∆Dj ), sj = ‖rj‖g, j ∈ N.

(b) When we use the l2-norm in Eq. (9), i.e., ‖s‖∗ = ‖s‖2, and under the assumption
that zj are normally and independently distributed with mean zero and variance
one, i.e., z̃ ∼ N (0, I ), then

P





∥
∥
∥
∥
∥
∥

∑

j∈N

rj z̃j

∥
∥
∥
∥
∥
∥

g

> �

√∑

j∈N

‖rj‖2
g,



 ≤
√

e�

α
exp

(

− �2

2α2

)

, (18)

where α = α1α2, α1, α2 derived in Proposition 4 and � > α.

Proof. We have

P(f (x, D̃) < 0)

≤ P



f (x, D0) + f (x,
∑

j∈N

∆Dj z̃j ) < 0



 (From (7))

≤ P
(
f (x,

∑
j∈N ∆Dj z̃j ) < −�‖s‖∗

)

(From (13), sj = ‖H(x,∆Dj )‖g)

≤ P



min



f (x,
∑

j∈N

∆Dj z̃j ), f (x, −
∑

j∈N

∆Dj z̃j )



 < −�‖s‖∗




= P



g(x,
∑

j∈N

∆Dj z̃j ) > �‖s‖∗



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= P



‖H(x,
∑

j∈N

∆Dj z̃j )‖g > �‖s‖∗




= P



‖
∑

j∈N

H(x,∆Dj )z̃j‖g > �‖s‖∗


 (H(x, D) is linear in D)

= P



‖
∑

j∈N

rj z̃j‖g > �‖s‖∗


 .

(b) Using, the relations ‖r‖g ≤ α1
√〈r, r〉 and ‖r‖g ≥ 1

α2

√〈r, r〉 from Proposition
4, we obtain

P





∥
∥
∥
∥
∥

∑

j∈N

rj z̃j

∥
∥
∥
∥
∥

g

> �
√∑

j∈N

‖rj‖2
g





= P





∥
∥
∥
∥
∥

∑

j∈N

rj z̃j

∥
∥
∥
∥
∥

2

g

> �2 ∑

j∈N

‖rj‖2
g





≤ P

(

α2
1α2

2

〈
∑

j∈N

rj z̃j ,
∑

k∈N

rkz̃k

〉

> �2 ∑

j∈N

〈rj , rj 〉
)

= P

(

α2 ∑

j∈N

∑

k∈N

〈rj , rk〉z̃j z̃k > �2 ∑

j∈N

〈rj , rj 〉
)

= P

(

α2z̃′Rz̃ > �2 ∑

j∈N

〈rj , rj 〉
)

,

where Rjk = 〈rj , rk〉. Clearly, R is a symmetric positive semidefinite matrix and can
be spectrally decomposed such that R = Q′ΛQ, where Λ is the diagonal matrix of
the eigenvalues and Q is the corresponding orthonormal matrix. Let ỹ = Qz̃ so that
z̃′Rz̃ = ỹ′Λỹ = ∑j∈N λj ỹ

2
j . Since z̃ ∼ N (0, I ), we also have ỹ ∼ N (0, I ), that is,

ỹj , j ∈ N are independent and normally distributed. Moreover,

∑

j∈N

λj = trace(R) =
∑

j∈N

〈rj , rj 〉.
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Therefore,

P



α2z̃′Rz̃ > �2
∑

j∈N

〈rj , rj 〉




= P



α2
∑

j∈N

λj ỹ
2
j > �2

∑

j∈N

λj





≤
E
(

exp
(
θα2∑

j∈N λj ỹ
2
j

))

exp
(
θ�2

∑
j∈N λj

) (From Markov’s inequality, θ > 0)

=
∏

j∈N E
(

exp
(
θα2λj ỹ

2
j

))

exp
(
θ�2

∑
j∈N λj

) (ỹ2
j are independent)

=

∏
j∈N E

(

exp

(
ỹ2
j

β

)θα2λj β
)

exp
(
θ�2

∑
j∈N λj

) for all β > 2 and θα2λjβ ≤ 1, ∀j ∈ N

≤

∏
j∈N

(

E

(

exp

(
ỹ2
j

β

))θα2λj β
)

exp
(
θ�2

∑
j∈N λj

) ,

where the last inequality follows from Jensen inequality, noting that xθα2λj β is a concave
function of x if θα2λjβ ∈ [0, 1]. Since ỹj ∼ N (0, 1),

E

(

exp

(
ỹ2
j

β

))

= 1√
2π

∫ ∞

∞
exp

(

−y2

2

(
β − 2

β

))

dy =
√

β

β − 2
.

Thus, we obtain

∏
j∈N

(

E

(

exp

(
ỹ2
j

β

))θα2λj β
)

exp
(
θ�2

∑
j∈N λj

) =
∏

j∈N

(
exp
(
θα2λjβ

1
2 ln
(

β
β−2

)))

exp
(
θ�2

∑
j∈N λj

)

=
exp
(
θα2β 1

2 ln
(

β
β−2

)∑
j∈N λj

)

exp
(
θ�2

∑
j∈N λj

) .

We select θ = 1/(α2βλ∗), where λ∗ = maxj∈N λj , and obtain

exp
(
θα2β 1

2 ln
(

β
β−2

)∑
j∈N λj

)

exp
(
θ�2

∑
j∈N λj

) = exp

(

ρ

(
1

2
ln

(
β

β − 2

)

− �2

α2β

))

,
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where ρ = (
∑

j∈N λj )/λ
∗. Taking derivatives and choosing the best β, we have

β = 2�2

�2 − α2 ,

for which � > α. Substituting and simplifying, we have

exp
(
ρ
(

1
2 ln
(

β
β−2

)
− �2

α2β

))
=
(√

e�
α

exp(− �2

2α2 )
)ρ

≤
√

e�
α

exp(− �2

2α2 ),

where the last inequality follows from ρ ≥ 1, and from
√

e�
α

exp(− �2

2α2 ) < 1 for � > α.

�

Remark 1. We note the series of inequalities used in the proof would increase the gap
between the actual probability of feasibility with the designed values. In particular, in
the last inequality, it is easy to see that ρ can be as large as the rank of the matrix, R.
Hence, for an uncertain single LP constraint, we have ρ=1, while for an uncertain sec-
ond order cone constraint, ρ could be as large as the dimension of the cone. Therefore,
for such problems, it is conceivable that even if our intended probability bound against
infeasibility is ε the solution to our proposed robust model may violate the constraints
with probability of less than εn, where n is the dimension of the cone. However, if the
errors are small and � is not too large, the price to pay for such assurance could be
acceptable in practice. A possible tuning approach might be to determine ρ and adapt �

accordingly. However, such an approach may not be polynomial.

Note that f (x, D̃) < 0, implies that ‖z̃‖ > �. Thus, when z̃ ∼ N (0, I )

P(f (x, D̃) < 0) ≤ P(‖z̃‖ > �) = 1 − χ2
|N |(�

2), (19)

where χ2
|N |(·) is the cdf of a χ -square distribution with |N | degrees of freedom. Note

that the bound (19) does not take into account the structure of f (x, D̃) in contrast to
bound (18) that depends on f (x, D̃) via the parameter α. To illustrate this, we substitute
the value of the parameter α from Proposition 4 in Eq. (18) and report in Table 6 the
bound in Eq. (18).

To amplify the previous discussion, we show in Table 6 the value of � in order for
the bound (18) to be less than or equal to ε. The last column shows the value of � using

Table 5. Probability bounds of P(f (x, D̃) < 0) for z̃ ∼ N (0, I )

Type Probability bound of infeasibility

LP
√

e� exp(− �2

2 )

QCQP
√

e
2 � exp(− �2

4 )

SOCP(1)
√

e� exp(− �2

2 )

SOCP(2)
√

e
2 � exp(− �2

4 )

SDP
√

e
m

� exp(− �2

2m
)
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bound (19) that is independent of the structure of the problem. We choose |N | = 495000
which is approximately the maximum number of data entries in a SDP constraint with
n = 100 and m = 100. Although the size |N | is unrealistic for constraints with less data
entries such as LP, the derived probability bounds remain valid. Note that bound (19)
leads to � = O(

√|N | ln(1/ε)).
For LP, SOCP, and QCQP, bound (18) leads to � = O(ln(1/ε)), which is indepen-

dent of the dimension of the problem. For SDP it leads to we have � = O(
√

m ln(1/ε)).
As a result, ignoring the structure of the problem and using bound (19) leads to very
conservative solutions.

Large Deviation Results of Nemirovski

Nemirovski [15, 16] gives bounds on the probability of large deviations in normed
spaces, under fairly general distributions for the random variables. He assumes that the
random variables z̃j , j ∈ N are mutually independent, with zero mean and satisfy the
following condition:

E(exp(z̃2
j )) ≤ exp(1). (20)

Note that z̃j ∼ N (0, σ 2), where σ 2 = 1
2 ln(2)

satisfies (20). Moreover, bounded random
variables such that |z̃j | ≤ 1 and E(z̃j ) = 0 satisfy (20) as well.

Let (E, ‖.‖) be a separable Banach space such that there exists a norm p(x) sat-
isfying ‖x‖ ≤ p(x) ≤ 2‖x‖ and that the function P(x) = 1

2p2(x) is continuously
differentiable and satisfies the relation

P(x + y) ≤ P(x) + 〈P ′(x), y〉 + κ2P(y).

Theorem 3. (Nemirovski [15, 16]) Let r̃j , j ∈ N be independent random vectors in E

with zero mean, such that E(exp(‖r̃j‖2/σ 2
j )) ≤ exp(1).

(a) For appropriately chosen absolute constant c > 0 and for all � > 0,

Pr



‖
∑

j∈N

r̃j‖ ≥ �

√∑

j∈N

σ 2
j



 ≤ exp(−c�2/κ2)

c
.

(b) For E = 	n and under Euclidian norm, ‖.‖2, κ = 1. For E = Mm,n of m × n

matrices, and under the standard matrix norm,

κ = O(
√

ln(min(n, m) + 1)).

Table 6. Sample calculations of � using Probability Bounds of Table 5 for m=100, n=100, |N |=495,000

ε LP QCQP SOCP(1) SOCP(2) SDP Eq. (19)

10−1 2.76 3.91 2.76 3.91 27.6 704.5
10−2 3.57 5.05 3.57 5.05 35.7 705.2
10−3 4.21 5.95 4.21 5.95 42.1 705.7
10−6 5.68 7.99 5.68 7.99 56.8 706.9
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With respect to the bounds of Theorem 2 in which we consider the Euclidian norm,
‖s‖∗ = ‖s‖2, we have exactly the same framework of Theorem 3, for which σj = ‖rj‖.
Furthermore, since

E(exp(‖r̃j‖2/σ 2
j )) = E(exp(‖rj‖2z̃j /‖rj‖2)) = E(exp(z̃j )) ≤ exp(1),

Theorem 3 directly applies to our proposed framework.
Table 7 shows the desired value of � to guarantee that the probability of feasibility

is least 1 − ε. We observe that Table 7 provides stronger bounds than our framework.

5. General cones

In this section, we generalize the results in Sections 2-4 to arbitrary conic constraints of
the form,

n∑

j=1

Ãj xj �K B̃, (21)

where {Ã1, ..., Ãn, B̃} = D̃ constitutes the set of data that is subject to uncertainty, and
K is a closed, convex, pointed cone with nonempty interior. For notational simplicity,
we define

A(x, D̃) =
n∑

j=1

Ãj xj − B̃

so that Eq. (21) is equivalent to

A(x, D̃) �K 0. (22)

We assume that the model for data uncertainty is given in Eq. (4) with z̃ ∼ N (0, I ). The
uncertainty set U satisfies Eq. (5) with the given norm satisfying ‖u‖ = ‖|u|‖.

Paralleling the earlier development, starting with a cone K and constraint (22), we
define the function f (·, ·) as follows so that f (x, D) > 0 if and only if A(x, D) �K 0.

Proposition 5. For any V �K 0, the function

f (x, D) = max θ

s.t. A(x, D) �K θV ,
(23)

satisfies the properties:

Table 7. The value of � to achieve probability of feasibility of at least 1 − ε obtained by applying Theorem 3

Type �

LP O(
√

ln 1/ε)

QCQP O(
√

ln 1/ε)

SOCP(1) O(
√

ln 1/ε)

SOCP(2) O(
√

ln 1/ε)

SDP O(
√

ln(m) ln 1/ε)
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(a) f (x, D) is bounded and concave in x and D.
(b) f (x, kD) = kf (x, D), ∀k ≥ 0.
(c) f (x, D) ≥ y if and only if A(x, D) �K yV .
(d) f (x, D) > y if and only if A(x, D) �K yV .

Proof. (a) Consider the dual of Problem (23):

z∗ = min 〈u, A(x, D)〉
s.t. 〈u, V 〉 = 1

u �K∗ 0,

where K∗ is the dual cone of K . Since K is a closed, convex, pointed cone with
nonempty interior, so is K∗ (see [5]). As V �K 0, for all u �K∗ 0 and u �= 0, we
have 〈u, V 〉 > 0, hence, the dual problem is bounded. Furthermore, since K∗ has
a nonempty interior, the dual problem is strictly feasible, i.e., there exists u �K∗
0, 〈u, V 〉 = 1. Therefore, by conic duality, the dual objective z∗ has the same
finite objective as the primal objective function f (x, D). Since A(x, D) is a linear
mapping of D and an affine mapping of x, it follows that f (x, D) is concave in x

and D.
(b) Using the dual expression of f (x, D), and that A(x, kD) = kA(x, D), the result

follows.
(c) If θ = y is feasible in Problem (23), we have f (x, D) ≥ θ = y. Conversely, if

f (x, D) ≥ y, then A(x, D) �K f (x, D)V �K yV .
(d) Suppose A(x, D) �K yV , then there exists ε > 0 such that A(x, D)−yV �K εV

or A(x, D) �K (ε+y)V . Hence, f (x, D) ≥ ε+y > y. Conversely, since V �K 0,
if f (x, D) > y then (f (x, D) − y)V �K 0. Hence, A(x, D) �K f (x, D)V �K

yV . 
�
Remark 2. With y = 0, (c) establishes that A(x, D) �K 0 if and only if f (x, D) ≥ 0
and (d) establishes that A(x, D) �K 0 if and only if f (x, D) > 0.

The proposed robust model is given in Eqs. (8) and (9). We next derive an expression
for g(x,∆D) = max{−f (x,∆D), −f (x, −∆D)}.
Proposition 6. Let g(x,∆D) = max{−f (x,∆D), −f (x, −∆D)}. Then

g(x,∆D) = ‖H(x,∆D)‖g,

where H(x,∆D) = A(x,∆D) and

‖S‖g = min {y : yV �K S �K −yV } .

Proof. We observe that

g(x,∆D) = max{−f (x,∆D), −f (x, −∆D)}
= min{y | − f (x,∆D) ≤ y, −f (x, −∆D) ≤ y}
= min{y | A(x,∆D) �K −yV , −A(x,∆D) �K −yV }

(From Proposition 5(c))

= ‖A(x,∆D)‖g.
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We also need to show that ‖.‖g is indeed a valid norm. Since V �K 0, then ‖S‖g ≥ 0.
Clearly, ‖0‖g = 0 and if ‖S‖g = 0, then 0 �K S �K 0, which implies that S = 0. To
show that ‖kS‖g = |k|‖S‖g , we observe that for k > 0,

‖kS‖g = min {y | yV �K kS �K −yV }
= k min

{y

k
| y

k
V �K S �K −y

k
V
}

= k‖S‖g.

Likewise, if k < 0

‖kS‖g = min {y | yV �K kS �K −yV }
= min {y | yV �K −kS �K −yV }
= ‖ − kS‖g

= −k‖S‖g.

Finally, to verify triangle inequality,

‖S‖g + ‖T ‖g

= min {y | yV �K S �K −yV } + min {z | zV �K T �K −zV }
= min {y + z | yV �K S �K −yV , zV �K T �K −zV }
≥ min {y + z | (y + z)V �K S + T �K −(y + z)V }
= ‖S + T ‖g. 
�

For the general conic constraint, the norm, ‖ · ‖g is dependent on the cone K and a point
in the interior of the cone V . Hence, we define ‖ · ‖K,V := ‖ · ‖g . Using Proposition 5
and Theorem 1 we next show that the robust counterpart for the conic constraint (22) is
tractable and provide a bound on the probability that the constraint is feasible.

Theorem 4. We have

(a) (Tractability) For a norm satisfying Eq. (6), constraint (8) for general cones is
equivalent to

A(x, D0) �K �yV ,

tjV �K A(x,∆Dj ) �K −tjV , j ∈ N,

‖t‖∗ ≤ y,

y ∈ 	, t ∈ 	|N |.

(24)

(b) (Probabilistic guarantee) When we use the l2-norm in Eq. (9), i.e., ‖s‖∗ = ‖s‖2,
and under the assumption that z̃ ∼ N (0, I ), then for all V we have

P(A(x, D̃) /∈ K) ≤
√

e�

αK,V
exp

(

− �2

2α2
K,V

)

,
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where

αK,V =
(

max√〈S,S〉=1
‖S‖K,V

)(

max
‖S‖K ,V =1

√
〈S, S〉

)

and

‖S‖K,V = min {y : yV �K S �K −yV } .

Proof. The Theorem follows directly from Propositions 5, 6, Theorems 1, 2. 
�

From Theorem 4, for any cone K , we select V in order to minimize αK,V , i.e.,

αK = min
V �K0

αK,V .

We next show that the smallest parameter α is
√

2 and
√

m for SOCP and SDP respec-
tively. For the second order cone, K = Ln+1,

Ln+1 = {x ∈ 	n+1 : ‖xn‖2 ≤ xn+1},

where xn = (x1, . . . , xn)
′. The induced norm is given by

‖x‖Ln+1,v

= min
{
y : yv �Ln+1 x �Ln+1 −yv

}

= min {y : ‖xn + vny‖2 ≤ vn+1y + xn+1, ‖xn − vny‖2 ≤ vn+1y − xn+1, }

and

αLn+1,v =
(

max
‖x‖2=1

‖x‖Ln+1,v

)(

max
‖x‖

Ln+1
,v

=1
‖x‖2

)

.

For the symmetric positive semidefinite cone, K = Sm+,

‖X‖Sm+,V = min {y : yV � X � −yV } ,

αSm+,V =
(

max√〈X,X〉=1
‖x‖Sm+,V

)(

max
‖X‖Sm+,V =1

√
〈X, X〉

)

.



28 D. Bertsimas, M. Sim

Case of Homogenous cones

A cone, K ⊆ 	n is homogenous if for any pair of points A, B �K 0, there exists an
invertible linear map M : 	n → 	n such that M(A) = B and M(K) = K (see for
instance Güler and Tunçel [14]). For general conic optimization, we have shown that
the probability bound depends on the the choice of V � 0. However, it turns out that
for homogenous cones, in which semidefinite and second-order cones are special cases,
the probability bound does not depend on V � 0.

Theorem 5. Suppose the cone K is homogenous. For any V �K 0, the probability
bound of Theorem 4(b) satisfies

P(A(x, D̃) /∈ K) ≤
√

e�

αK
exp

(

− �2

2α2
K

)

.

Proof. Let V ∗ = arg minV �K0. Since the cone is homogenous and V , V ∗ �K 0, there
exists an invertible linear map M(·) satisfying M(V ) = V ∗ and M(K) = K . Noting
that under the linear mapping, we have

X �K Y

⇒ X − Y �K 0
⇒ M(X − Y ) �K 0
⇒ M(X) �K M(Y ).

Hence, it follows easily that the feasibility of (24) implies

AM(x, D0) �K �yV ∗,
tjV

∗ �K AM(x,∆Dj ) �K −tjV
∗, j ∈ N,

‖t‖∗ ≤ y,

y ∈ 	, t ∈ 	|N |,

where

AM(D) = M(A(D)) =
n∑

j=1

M(Aj ) − M(B).

Hence, the probability bound follows. 
�

We will next derive αK for semidefinite and second order cones.

Proposition 7. We have

(a) For the second order cone, αLn+1 = √
2.

(b) For the symmetric positive semidefinite cone, αSm+ = √
m.
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Proof. For any V �K 0, we observe that

‖V ‖K,V = min {y : yV �K V �K −yV } = 1.

Otherwise, if ‖V ‖K,V < 1, there exist y < 1 such that yV �K V , which implies that
−V �K 0, contradicting V �K 0. Hence, ‖v‖Ln+1,v = 1 and we obtain

(

max
‖x‖

Ln+1,v
=1

‖x‖2

)

≥ ‖v‖2.

Likewise, when xn = (vn)/(
√

2‖vn‖2) and xn+1 = −1/(
√

2), so that ‖x‖2 = 1, we
can also verify that the inequalities

‖ vn√
2‖vn‖2

+ vny‖2 ≤ vn+1y − 1√
2

‖ vn√
2‖vn‖2

− vny‖2 ≤ vn+1y + 1√
2

hold if and only if y ≥ √
2/(vn+1 − ‖vn‖2). Hence, ‖x‖Ln+1,v = √

2/(vn+1 − ‖vn‖2)

and we obtain

max
‖x‖2=1

‖x‖Ln+1,v ≥
√

2

vn+1 − ‖vn‖2
.

Therefore, since 0 < vn+1 − ‖vn‖2 ≤ vn+1 ≤ ‖v‖, we have

αLn+1,v =
(

max
‖x‖2=1

‖x‖Ln+1,v

)(

max
‖x‖

Ln+1,v
=1

‖x‖2

)

≥
√

2‖v‖2

vn+1 − ‖vn‖2
≥

√
2.

When v = (0, 1)′, we have

‖x‖Ln+1,v = ‖xn‖2 + |xn+1|,
and from Proposition 4(b), the bound is achieved. Hence, αLn+1 = √

2.
(b) Since V is an invertible matrix, we observe that

‖X‖Sm+,V = min {y : yV � X � −yV }
= min

{
y : yI � V − 1

2 XV − 1
2 � −yI

}

= ‖V − 1
2 XV − 1

2 ‖2.

For any V � 0, let X = V , we have ‖X‖Sm+,V = 1 and

〈X, X〉 = trace(V V ) = ‖λ‖2
2,

where λ ∈ 	m is a vector corresponding to all the eigenvalues of the matrix V . Hence,
we obtain

(

max
‖X‖Sm+,V =1

√
〈X, X〉

)

≥ ‖λ‖2.
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Without loss of generality, let λ1 be the smallest eigenvalue of V with corresponding
normalized eigenvector, q1. Now, let X = q1q

′
1. Observe that

〈X, X〉 = trace(XX)

= trace(q1q
′
1q1q

′
1)

= trace(q ′
1q1q

′
1q1)

= 1.

We can express the matrix, V in its spectral decomposition, so that V = ∑
j qjq

′
j λj .

Hence,

‖X‖Sm+,V = ‖V − 1
2 XV − 1

2 ‖2

= ‖∑j qjq
′
j λ

− 1
2

j q1q
′
1

∑
j qjq

′
j λ

− 1
2

j ‖2

= ‖λ−1
1 q1q

′
1‖2

= λ−1
1 .

Therefore, we establish that

(

max√〈X,X〉=1
‖X‖Sm+,V

)

≥ λ−1
1 .

Combining the results, we have

αSm,V =
(

max
‖X‖Sm+,V =1

√
〈X, X〉

)(

max√〈X,X〉=1
‖X‖Sm+,V

)

≥ ‖λ‖2

λ1
≥ √

m.

When V = I , we have

‖X‖Sm,V = ‖X‖2,

and from Proposition 4(d), the bound is achieved. Hence, αSm = √
m. 
�

We have shown that for homogeneous cones, while different V lead to the same
probability bounds, some choices of V may lead to better objectives. The following
theorem suggests an iterative improvement strategy.

Theorem 6. For any V �K 0, if x, y, t are feasible in (24), then they are also feasible
in the same problem in which V is replaced by

W = A(x, D0)/(�y).

Proof. Observe that W �K V �K 0 and it is trivial to check that the constraints are
satisfied. 
�
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Therefore, under this approach, the “best” choice of V satisfies,

�yV = A(x, D0)

Unfortunately, if V is variable, the convexity and possibly tractability of the model
would be destroyed. The iterative improvement method of Theorem 6 can be an attrac-
tive heuristic.

A similar issue surfaces when we represent quadratic constraints as second order
cones. In fact, there are more than one way of representing quadratic constraints as
second order conic constraints. In particular, the constraint

‖Ax‖2
2 + b′x + c ≤ 0

is equivalent to

∥
∥
∥
∥
∥

[
Ax

λ+λ−1(b′x+c)
2

]∥
∥
∥
∥
∥

2

≤ λ − λ−1(b′
x + c)

2
,

for any λ > 0. Unfortunately, the problem will not be convex if λ is made a variable.
We leave it an open problem as to whether this could be done effectively.

6. Conclusions

We proposed a relaxed robust counterpart for general conic optimization problems that
we believe achieves the objectives outlined in the introduction, namely:

(a) It preserves the computational tractability of the nominal problem. Specifically the
robust conic optimization problem retains its original structure, i.e., robust LPs
remain LPs, robust SOCPs remain SOCPs and robust SDPs remain SDPs. Moreover,
the size of the proposed robust problem especially under the l2 norm is practically
the same as the nominal problem.

(b) It allows us to provide a guarantee on the probability that the robust solution is fea-
sible, when the uncertain coefficients obey independent and identically distributed
normal distributions.

A. Proof of Proposition 1

(a) Let y ∈ arg max‖x‖≤1 w′x, and for every j ∈ N , let zj = |yj | if wj ≥ 0 and
zj = −|yj |, otherwise. Clearly, w′z = (|w|)′(|y|) ≥ w′y. Since, ‖z‖ = ‖|z|‖ =
‖|y|‖ = ‖y‖ ≤ 1, and from the optimality of y, we have w′z ≤ w′y, leading to
w′z = (|w|)′(|y|) = w′y. Since ‖w‖ = ‖|w|‖, we obtain

‖w‖∗ = max
‖x‖≤1

(w)′x = max
‖x‖≤1

(|w|)′(|x|) = max
‖x‖≤1

(|w|)′x = ‖|w|‖∗.
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(b) Note that

‖w‖∗ = max
‖x‖≤1

(|w|)′(|x|) = max
‖x‖≤1
x≥0

(|w|)′x.

If |v| ≤ |w|,
‖v‖∗ = max

‖x‖≤1
x≥0

(|v|)′x ≤ max
‖x‖≤1
x≥0

(|w|)′x = ‖w‖∗.

(c) We apply part (b) to the norm ‖.‖∗. From the self dual property of norms ‖.‖∗∗ = ‖.‖,
we obtain part (c). 
�

B. Simplified formulation under independent uncertainties

In this section, we show that if each data entry of the model has independent uncertainty,
we can substantially reduce the size of the robust formulation (14). We focus on the
equivalent representation (13),

f (x, D0) ≥ �y, ‖s‖∗ ≤ y,

where, sj = max{−f (x,∆Dj ), −f (x, −∆Dj )} = g(x,∆Dj ), for j ∈ N .

Proposition 8. For LP, QCQP, SOCP(1), SOCP(2) and SDP, we can express
sj = |�djxi(j)| for which �dj , j ∈ N are constants and the function, i : N →
{0, . . . , n} maps j ∈ N to the index of the corresponding variable. We define x0 = 1, to
address the case when sj is not variable dependent.

Proof. We associate the j th data entry, j ∈ N with an iid random variable z̃j . The
corresponding expression of g(x,∆Dj ) is shown in Table 3.

(a) LP:
Uncertain LP data is represented as D̃ = (ã, b̃), where

ãj = a0
j + �aj z̃j , j = 1, . . . , n

b̃ = b0 + �bz̃n+1.

We have |N | = n + 1 and

sj = |�ajxj |, j = 1, . . . , n

sn+1 = |�b|.
(b) QCQP:

Uncertain QCQP data is represented as D̃ = (Ã, b̃, c̃, 1), where

Ãkj = A0
kj + �Akj z̃n(k−1)+j , j1, . . . , n, k = 1, . . . , l,

b̃j = b0
j + �bj z̃nl+j , j = 1, . . . , n,

c̃ = c0 + �cz̃n(l+1)+1.
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We have |N | = n(l + 1) + 1 and

sn(k−1)+j = |�Akjxj |, j = 1, . . . , n, k = 1, . . . , l,

snl+j = |�bjxj |, j = 1, . . . , n,

sn(l+1)+1 = |�c|.
(c) SOCP(1)/SOCP(2):

Uncertain SOCP(2) data is represented as D̃ = (Ã, b̃, c̃, d), where

Ãkj = A0
kj + �Akj z̃n(k−1)+j , j = 1, . . . , n, k = 1, . . . , l,

b̃k = b0
k + �bkz̃nl+k, k = 1, . . . , l,

c̃j = c0
j + �cj z̃(n+1)l+j , j = 1, . . . , n,

d̃ = d0 + �dz̃(n+1)l+n+1.

We have |N | = (n + 1)l + n + 1 and

sn(k−1)+j = |�Akjxj |, j = 1, . . . , n, k = 1, . . . , l,

snl+k = |�bk|, j = 1, . . . , l,

s(n+1)l+j = |�cjxj |, j = 1, . . . , n,

s(n+1)l+n+1 = |�d|.
Note that SOCP(1) is a special case of SOCP(2), for which |N | = (n + 1)l, that is,
sj = 0 for all j > (n + 1)l.

(d) SDP:
Uncertain SDP data is represented as D̃ = (Ã1, . . . , Ãn, B̃), where

Ãi = A0
i +∑m

k=1
∑k

j=1[�Ai]jkI jkz̃p(i,j,k) i = 1, . . . , n,

B̃ = B0 +∑n
k=1
∑k

j=1[�B]jkI jkz̃p(n+1,j,k),

where the index function p(i, j, k) = (i − 1)(m(m + 1)/2) + k(k − 1)/2 + j , and the
symmetric matrix I jk ∈ 	m×m satisfies,

I jk =
{

(eje
′
k + eke

′
j ) if j �= k

eke
′
k if k = j

ek being the kth unit vector. Hence, |N | = (n + 1)(m(m + 1))/2. Note that if j = k,
‖I jk‖2 = 1. Otherwise, I jk has rank 2 and (ej + ek)/

√
2 and (ej − ek)/

√
2 are two

eigenvectors of I jk with corresponding eigenvalues 1 and −1. Hence, ‖I jk‖2 = 1 for
all valid indices j and k. Therefore, we have

sp(i,j,k) = |[�Ai]jkxi |, ∀i ∈ {1, . . . , n}, j, k ∈ {1, . . . , m}, j ≤ k

sp(n+1,j,k) = |[�B]jk|, ∀j, k ∈ {1, . . . , m}, j ≤ k. 
�
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We define the set J (l) = {j : i(j) = l, j ∈ N} for l ∈ {0, . . . , n}. From Table 2, we
have the following robust formulations under the different norms in the restriction set V
of Eq. (9).

(a) l∞-norm
The constraint ‖s‖∗ ≤ y for the l∞-norm is equivalent to

∑

j∈N

|�djxi(j)| ≤ y ⇔
n∑

l=0




∑

j∈J (l)

|�dj |


 |xl | ≤ y

or

∑
j∈J (0) |�dj | +∑n

l=1

(∑
j∈J (l) |�dj |

)
tl ≤ y

t ≥ x, t ≥ −x

t ∈ 	n.

We introduce additional n + 1 variables, including the variable y, and 2n + 1 linear
constraints to the nominal problem.

(b) l1-norm
The constraint ‖s‖∗ ≤ y for the l1-norm is equivalent to

max
j∈N

|�djxi(j)| ≤ y ⇔ max
l∈{0,...,n}

(

max
j∈J (l)

|�dj |
)

|xl | ≤ y

or

maxj∈J (0) |�dj | ≤ y

maxj∈J (l) |�dj |xl ≤ y l = 1, . . . , n

− maxj∈J (l) |�dj |xl ≤ y l = 1, . . . , n.

We introduce an additional variable and 2n + 1 linear constraints to the nominal
problem.

(c) l1 ∩ l∞-norm
The constraint ‖s‖∗ ≤ y for the l1 ∩ l∞-norm is equivalent to

tj ≥ |�dj |xi(j) j ∈ N

tj ≥ −|�dj |xi(j) j ∈ N

�p +∑j∈N rj ≤ y

rj + p ≥ tj , ∀j ∈ N

r ∈ 	|N |
+ , t ∈ 	|N |, p ∈ 	+,

leading to an additional of 2|N | + 2 variables and 4|N | + 2 linear constraints,
including non-negativity constraints, to the nominal problem.
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(d) l2-norm
The constraint ‖s‖∗ ≤ y for the l2-norm is equivalent to

√∑

j∈N

(�djxi(j))2 ≤ y ⇔

√
√
√
√
√
∑

j∈J (0)

|�dj | +
n∑

l=1




∑

j∈J (l)

�d2
j



 x2
l ≤ y.

We only introduce an additional variable, y and one SOCP constraint to the nominal
problem.

(e) l2 ∩ l∞-norm
The constraint ‖s‖∗ ≤ y for the l2 ∩ l∞-norm is equivalent to

tj ≥ |�dj |xi(j) j ∈ N

tj ≥ −|�dj |xi(j) j ∈ N

‖r − t‖2 + 1
�

∑
j∈N rj ≤ y

t ∈ 	|N |, r ∈ 	|N |
+ .

We introduce adds 2|N | + 1 variables, one SOCP constraint and 3|N | linear con-
straints, including non-negativity constraints, to the nominal problem.

In Table 4, we summarize the size increase and the nature of the robust model for
different choices of the given norm.

Acknowledgements. We would like to thank the reviewers of the paper for several very insightful comments.

References

1. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23, 769–805 (1998)
2. Ben-Tal, A., Nemirovski, A.: On the quality of SDP approximations of uncertain SDP programs, Research

Report #4/98 Optimization Laboratory, Faculty of Industrial Engineering and Management, Technion -
Israel Institute of Technology, Israel (1998)

3. Ben-Tal, A., Nemirovski, A.: Robust solutions to uncertain programs. Oper. Res. Let. 25, 1–13 (1999)
4. Ben-Tal, A., Nemirovski, A.: Robust solutions of Linear Programming problems contaminated with

uncertain data, Math. Progr. 88, 411–424 (2000)
5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engi-

neering Applications. MPR-SIAM Series on Optimization, SIAM, Philadelphia 2001
6. Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust semidefinite programming. In: Saigal, R., Vandenber-

ghe, L., Wolkowicz, H., (eds.), Semidefinite programming and applications, KluwerAcademic Publishers,
(2000)

7. Bertsimas, D., Brown, D.: Constrainted stochastic LQC: A tractable approach. submitted for publication,
2004

8. Bertsimas, D., Pachamanova, D., Sim, M.: Robust Linear Optimization under General Norms. Operations
Research Letters, 32, 510–516 (2003)

9. Bertsimas, D., Sim, M.: Price of Robustness. Oper. Res. 52 (1), 35–53 (2004)
10. Bertsimas, D., Sim, M.: Robust Discrete Optimization and Network Flows. Math. Progr. 98, 49–71 (2003)
11. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York, 1997
12. El-Ghaoui, Lebret, H.: Robust solutions to least-square problems to uncertain data matrices. SIAM J.

Matrix Anal. Appl. 18, 1035–1064 (1997)
13. El-Ghaoui, L., Oustry, F., Lebret, H.: Robust solutions to uncertain semidefinite programs. SIAM J.

Optim. 9, 33–52 (1998)
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